Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

نویسندگان

  • Yasunori Kudo
  • Keisuke Ogaki
  • Yusuke Matsui
  • Yuri Odagiri
چکیده

The task of three-dimensional (3D) human pose estimation from a single image can be divided into two parts: (1) Two-dimensional (2D) human joint detection from the image and (2) estimating a 3D pose from the 2D joints. Herein, we focus on the second part, i.e., a 3D pose estimation from 2D joint locations. The problem with existing methods is that they require either (1) a 3D pose dataset or (2) 2D joint locations in consecutive frames taken from a video sequence. We aim to solve these problems. For the first time, we propose a method that learns a 3D human pose without any 3D datasets. Our method can predict a 3D pose from 2D joint locations in a single image. Our system is based on the generative adversarial networks, and the networks are trained in an unsupervised manner. Our primary idea is that, if the network can predict a 3D human pose correctly, the 3D pose that is projected onto a 2D plane should not collapse even if it is rotated perpendicularly. We evaluated the performance of our method using Human3.6M and the MPII dataset and showed that our network can predict a 3D pose well even if the 3D dataset is not available during training.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Human Pose Estimation in the Wild by Adversarial Learning

Recently, remarkable advances have been achieved in 3D human pose estimation from monocular images because of the powerful Deep Convolutional Neural Networks (DCNNs). Despite their success on large-scale datasets collected in the constrained lab environment, it is difficult to obtain the 3D pose annotations for in-the-wild images. Therefore, 3D human pose estimation in the wild is still a chall...

متن کامل

Unsupervised Depth Estimation, 3D Face Rotation and Replacement

We present an unsupervised approach for learning to estimate three dimensional (3D) facial structure from a single image while also predicting 3D viewpoint transformations that match a desired pose and facial geometry. We achieve this by inferring the depth of facial key-points in an input image in an unsupervised way. We show how it is possible to use these depths as intermediate computations ...

متن کامل

Unsupervised 3D Reconstruction from a Single Image via Adversarial Learning

Recent advancements in deep learning opened new opportunities for learning a high-quality 3D model from a single 2D image given sufficient training on large-scale data sets. However, the significant imbalance between available amount of images and 3D models, and the limited availability of labeled 2D image data (i.e. manually annotated pairs between images and their corresponding 3D models), se...

متن کامل

Holistic Planimetric prediction to Local Volumetric prediction for 3D Human Pose Estimation

We propose a novel approach to 3D human pose estimation from a single depth map. Recently, convolutional neural network (CNN) has become a powerful paradigm in computer vision. Many of computer vision tasks have benefited from CNNs, however, the conventional approach to directly regress 3D body joint locations from an image does not yield a noticeably improved performance. In contrast, we formu...

متن کامل

Adversarial Learning of Structure-Aware Fully Convolutional Networks for Landmark Localization

Landmark/pose estimation in single monocular images have received much effort in computer vision due to its important applications. It remains a challenging task when input images severe occlusions caused by, e.g., adverse camera views. Under such circumstances, biologically implausible pose predictions may be produced. In contrast, human vision is able to predict poses by exploiting geometric ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018